X iv : m at h - ph / 0 10 10 30 v 1 2 7 Ja n 20 01 On the quasi - exact solvability of a singular potential in D - dimensions : confined and unconfined
نویسنده
چکیده
The D dimensional quasi exact solutions for the singular even power anharmonic potential V (q) = aq2 + bq−4 + cq−6 are reported. We show that whilst Dong and Ma’s [5] quasi exact ground state solution (in D=2) is beyond doubt, their solution for the first excited state is exotic. Quasi exact solutions for the ground and first excited states are also given for the above potential confined to an impenetrable cylindrical ( D=2 ) or spherical ( D=3 ) wall.
منابع مشابه
O ct 2 00 1 On the quasi - exact solvability of a singular potential in D - dimensions : confined and unconfined
The D dimensional quasi exact solutions for the singular even power anharmonic potential V (q) = aq2 + bq−4 + cq−6 are reported. We show that whilst Dong and Ma’s [5] quasi exact ground state solution (in D=2) is beyond doubt, their solution for the first excited state is exotic. Quasi exact solutions for the ground and first excited states are also given for the above potential confined to an ...
متن کاملar X iv : m at h - ph / 0 20 10 06 v 2 1 5 Ja n 20 02 Quasi - classical versus non - classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials
We consider the Schrödinger operator H on L 2 (R 2) or L 2 (R 3) with constant magnetic field, and electric potential V which typically decays at infinity exponentially fast or has a compact support. We investigate the asymptotic behaviour of the discrete spectrum of H near the boundary points of its essential spectrum. If the decay of V is Gaussian or faster, this behaviour is non-classical in...
متن کاملar X iv : 0 71 0 . 20 07 v 2 [ m at h - ph ] 1 9 Fe b 20 08 The wave equation on singular space - times
We prove local unique solvability of the wave equation for a large class of weakly singular, locally bounded space-time metrics in a suitable space of generalised functions.
متن کاملar X iv : m at h - ph / 0 10 10 22 v 1 2 3 Ja n 20 01 Poincaré renormalized forms and regular singular points of vector fields in the plane Giuseppe
We discuss the local behaviour of vector fields in the plane R around a singular point (i.e. a zero), on the basis of standard (PoincaréDulac) normal forms theory, and from the point of view of Poincaré renormalized forms [28]. We give a complete classification for regular singular points and provide explicit formulas for non-degenerate cases. A computational error for a degenerate case of codi...
متن کامل